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SUMMARY 

The compressive buckling stress of outstanding flanges reinforced 
by bulbs w a s  computed by the strain-energy method f o r  flanges having 
10 shapes and a range of lengths. The r e su l t s  were checked f o r  some 
cases by computations based on a differential-equatian method. 
of the flange opposite the bulb w a s  considered clamped, and the loaded 
ends were considered simply supported. 
determine which shape of flange gave the grea tes t  support t o  the struc- 
t u re  t o  which it w a s  attached. It was found that the flange capable of 
giving the  most support without buckling had on over-all  flange width 
of 3.4 fi (where + is  the cross-sectional area of the flange). 
This flange w a s  somewhat slimmer than the one previously found best  fo r  
the  case of a simply supported flange root. 

The edge 

The r e su l t s  were analyzed t o  

INTRODUCTION 

Flanges reinforced by bulbs are  widely used t o  reinforce the 
s t ressed  skin i n  semimonocoque a i rc raf t  structures.  
fo ld  function i n  the s t ructure  by (1) maintaini-n-g the s t m c t u r a l  shape 
and (2)  carrying a substant ia l  portion of the  externally applied load. 

They perform a two- 

The outstanding flanges i n  such s t ructures  have a tendency t o  f a i l  
under compressive load by a l a t e r a l  displacement of the  outstanding 
portions of the flange with respect t o  the r e s t  of the s t ructure .  A s  
i s  pointed out i n  reference 1, such a f a i lu re  i s  intermediate between 
tors iona l  i n s t a b i l i t y  i n  which no cross-sectional d i s tor t ion  of the 
flange occurs (considered 3y Goodier i n  reference 2, Kappus i n  refer- 
ence 3, and Lundquist and Fligg i n  reference 4 )  and loca l  i n s t ab i l i t y  
of coqonent elements of the structure i n  which the l i nes  Joining 
component plates  remain s t ra ight  (considered by Timoshenko i n  refer- 
ence 5 ,  eo11 i n  reference 6, and Lundquist, Stowell, and Schuette i n  
reference 7). 
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The l a t e r a l  i n s t a b i l i t y  of outstanding flanges under compressive 
load, fo r  the case where the flange has a reinforcing bulb at i t s  outer 
edge, has received considerable study. Windenburg (reference 8) consid- 
ered both loca l  and primary in s t ab i l i t y  of flanges having a reinforcing 
bulb symmetrically placed on both sides of the flange web. 
ered the case of simple support of the flange by the s t ructure  t o  which 
it i s  attached. 
s t ruc ture  gives clamped support t o  the flange and presented numerical 
r e s u l t s  f o r  cer ta in  specif ic  cases. 

He consid- 

Chwalla (reference 9 )  considered the  case where the 

A survey (reference 1) of a l u m i n m l l o y  extrusions showed tha t  
t he  shape of most reinforcing bulbs is e i the r  rectangular with a rounded 
end and a f i l l e t  a t  the junction of the bulb and flange or  c i rcu lar  with 
a f i l l e t  a t  the junction of the bulb and the flange. 
cases the bulb w a s  en t i re ly  on one s ide  of the  flange, thus resul t ing 
i n  an unsymmetrical dis t r ibut ion of material  a t  the  outer edge of the 
flange. 
could be approximately covered by 54 specif ic  flange shapes. 

I n  nearly a l l  

It w a s  found tha t  the range of cross-sectional shapes used 

I n  reference 1, numerical solutions were given i n  dimensionless 

The edge condition along the l i n e  of 
form f o r  the l a t e r a l  i n s t a b i l i t y  of these 54 d i f fe ren t  flanges as a 
function of the flange length. 
attachment t o  the  s t ructure  w a s  taken as the extreme of simple support. 
I n  the  present paper, the case of clamped support w i l l  be t reated and, 
of the 54 cross sections analyzed i n  reference 1, only a representative 
group of 10 w i l l  be considered. 

This work w a s  conducted at  the  National Bureau of Standards under 
the  sponsorship and with the f inancial  assistance of the National 
Advisory Committee for  Aeronautics. 

SYMBOLS 

cross-sectional area of bulb; bulb includes area cross- 
hatched i n  f i g w e  1 % 

4? cross-sectional area of flange 

A, cross+ectional area of sheet i n  shee-tringer s t ructure  

b flange width from base t o  bulb center 

width of rectangular-type bulb from f r e e  end t o  center l i n e  
of web 

b l  

t 



NACA TN 1985 

(ld? $J f lexura l  r i g i d i t y  of web 

Young's modulus 

shear modulus 

~ Poisson's r a t io ;  0.3 

moment of i n e r t i a  

moment of i n e r t i a  of bulb about center l i n e  of web 

moment of i n e r t i a  of flange about i t s  base 

tors ion constant of bulb 

flange length 

flange thickness 

thickness of rectangulety-pe bulb 

f i l l e t  radius of rectangular-type bulb, taken equal t o  

f i l l e t  radius of circular-type bulb 

bulb radius of circular-type bulb 

tl 

l a t e r a l  displacement of flange 

compressive end s t r e s s  

c r i t i c a l  s t r e s s  f o r  i n s t ab i l i t y  of flange 

c r i t i c a l  s t r e s s  f o r  sheet-stringer s t ructure  

c r i t i c a l  s t r e s s  f o r  i n s t ab i l i t y  of an in f in i t e ly  long 
flange 

angle of t w i s t  of bulb with respect t o  web 

coordinate alcng flange length 

coordinate along flange width 
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SHAPE OF REIIWORCID FLANGES 

The shapes of the reinforced flanges a re  shown i n  figure 1 and 
t h e i r  properties and dimensions a re  given in tab le  1. Five of the 
flanges had essent ia l ly  rectangular reinforcing bulbs, while, f o r  the 
remaining five,  the bulbs were essent ia l ly  c i rcular .  The f i rs t  column 
i n  tab le  1 gives the  flange number. 
of the corresponding flange considered in  reference 1. 
column gives the thickness of the flange web, and columns (4)  t o  (6)  
give dimensionless r a t i o s  describing the shape of the cross section. 

The second c o l m  gives the number 
The t h i r d  

ANALYSB 

The flanges considered i n  t h i s ' r e p o r t  a r e  clamped a t  the root  edge 
and ge t  l a t e r a l  and tors ional  support a t  the outer edge from the 
reinforcing bulb. 
plane of the web and, therefore, any bending which does occur w i l l  have 
the  web center l i n e  as a neutral  axis. This f a c t  w i l l  allow a conven- 
t i o n a l  treatment f o r  the unsymmetrical reinforcing bulbs ( f ig .  1) 
considered i n  t h i s  report .  The buckling s t r e s s  of the flange w i l l  be 
computed as tha t  of a p l a t e  clamped a t  one edge and restrained a t  the 
othsr  edge by a beam. 
equal t o  t h a t  o f  the cross-hatched area of f igure 1 about the center 
l i n e  of the web, a tors ional  s t i f fnes s  
flange ( f i g .  1) les s  t h a t  of the web, and an area 
the  cross-hatched area of figure 1. Values of Ib, JT, and Ab a re  
given i n  columns (7) ,  ( 8 ) ,  and (9) of tab le  1. The t o t a l  area of the 
flange + is given i n  column (10) of tab le  1. The f lexura l  r i g i d i t y  D 
i s  given as D/E i n  column (11) of t ab le  1. 

For such a flange, no bending is  possible i n  the 

This beam w i l l  have a bending stiffness EIb  

GJT equal t o  tha t  of the whole 
equal t o  t h a t  of' Ab 

Pla te  Theory 

An expression f o r  the  compressive buckling s t r e s s  w a s  f irst  
obtained by integrating the d i f f e ren t i a l  equation of the deflection 
surface t o  f ind the magnitude of the compressive s t r e s s  necessary t o  
keep the  p la te  i n  a s l i gh t ly  buckled shape. The derivation of t h i s  
method appears i n  the appendix. 
excessively cumbersome, a strain-energy method w a s  developed, using the 
technique given on pages 325 t o  327 of reference 5 as follows: 

Since the  integration method appeared 
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The work of the external forces 0.n the p l a t e  and beam (see p. 325, 
reference 5) i s  

The s t r a i n  energy of the beam and plate ,  neglecting shear in  the 
beam i s  (see pp. 325, 24, and 265, reference 5 )  

where 

I n  order t o  obtain the results in dimensionless form it was  
convenient t o  s e t  v = 0.3, G = E/2.6 and t o  work with Il', defined 
bY 

A function allowing a s ingle  buckle i n  the x d i r e c t i o n ,  

where al, 9, . . ., &n are  arbi t rary constants, w a s  chosen t o  
represent the deflection surface of the plate .  
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The c r i t i c a l  s t r e s s  i s  given by the expression (reference 5 ,  
P-  326) 

or, using equation (4) ,  

9, . . . in equation ( 5 )  a re  ai' The values of the constants 

bcr. 

determined from the condition tha t  
buckling s t r e s s  
simultaneous equations (reference 5, p. 326) 

hey give the lowest possible 
For t h i s  t o  be t rue  they must sa t i s fy  the s e t  of 

J . . . . .  
Solutions of equations (8) d i f fe ren t  from zero may be obtained 

only if the determinant of the equations i s  zero. 

The expressions fo r  and I2 may be obtained by subst i tut ing 
equation ( 5 )  i n  equations 't ( ) and (l), respectively. The c r i t i c a l  
buckling s t r e s s  may then be obtained by subst i tut ing the expressions 
obtained for  Ilt and I2 i n  equation ( 8 ) ,  se t t i ng  the determinant 
of the resul t ing equations equal t o  zero, and solving for the  lowest 
values of acr/E. 

Convergence 

To determine the minimum number of a rb i t r a ry  constants necessary 
i n  equation ( 5 )  for accurate determination of the buckling s t r e s s ,  the 
buckling-stress r a t i o  of flange 5 with 

t i on  ( 5 ) ,  successively. The buckling-stress values according t o  the 
s t r a inene rgy  method were as follows: 

L FF = 5.396 w a s  computed 
three times, using one, two, and three ar c( i t r a r y  constants i n  equa- 

J 
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hmber of arbitrary constants 
in deflection equation 

1 
2 
3 

Values of acrp obtained 

0.0308 
.0282 
0233 

The convergence seemed slow. To obtain additional information on this 
point, the buckling stress was also coquted by the integration method 
with the result Ocr/E = 0.0233. 

It was concluded that in this case the equatian 

w = (sin F) (al$ + a93 + a3y4) (9) 

has the minimum number of arbitrary constants necessary t o  adequately 
represent the deflection surface. 

Buckling stress-ratio values for  m e  or more length-ratio values 
were computed for each of the 10 flange shapes by the integration 
method given in the appendix for comparison with the corresponding 
buckling stress obtained by the strain-nergy method using equation (9). 
Stress-ratio values obtained by both methods m e  given in table 2. 
all cases the results of the two methods agree within the accuracy of 
the numerical computations. It was concluded that equation ( 9 )  would 
be sufficiently accurate and the remaining computations were done by 
the strain-energy method using equation (9). 

In 

Contribution of Bulb to Critical Stress 

The contributions of the bending stiffness and torsional stiffness, 
L/&, = 18.91 were respectively, to the buckling stress of flange 4 at 

determined by recomputing the buckling stress ratio twice, first 
omitting the bending-stiffness term, and then omitting the torsional- 
rigidity term. 
reduced the buckling stress-ratio value from 0.0147 to 0.0086, or 
41 percent, and that omission of the torsional-stiffness term reduced 
it from 0.0147 to 0.0134, or  only 9 percent. 

It "as found that omission of the bending-stiff'ness term 

Multiple Roots 

In the strain-nergy method, the critical stress is found from the 
condition that the determinant of the coefficients of three simultaneous 
equations shall be zero. This determinant, when expanded, is a cubic 
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equation, and as a re su l t  more than m e  solution is  possible. 
t o  make su re  that the solution obtained w a s  t ha t  corresponding t o  the 
lowest buckling load, a p lo t  w a s  made, i n  some cases, of the value of 
t he  determinant as a function of the assumed c r i t i c a l  stress, s t a r t i ng  
from zero s t ress .  The f i r s t  intersect ion with the zero axis w a s  taken 
as the lowest c r i t i c a l  stress. This method w a s  used only i n  those 
cases where there was some doubt as t o  whether the  s t r e s s  obtained 
ac tua l ly  corresponded t o  the lowest c r i t i c a l  s t r e s s .  In the other 
cases, values of the determinant were ~ b t a i n e d  only in the neighborhood 
of the estimated zero point. 

I n  order 

RESULTS 

C r i t i c a l  'Stress 

The buckling s t r e s s  r a t i o  acr/E is  plot ted in f igure 2 against 
L & f o r  the 10 flange shapes considered. The 

was c h osen as the abscissa since it has a fixed value f o r  
similar specimens and it a l so  has a fixed value f o r  

a l l  geometrically d i f fe ren t  specimens of a given length having the same 
cross-sectional area. Comparison of ordinates f o r  a given abscissa 
w i l l  therefore show the e f fec t  of changing the dis t r ibut ion of material  
i n  the flange. 

The buckling s t r e s s  r a t i o s  i n  f igure 2 decrease rapidly with 
increasing flange length, go through a minimum at  a flange length lower 
than tha t  usually encountered i n  a i r c r a f t  s t ructures ,  and r i s e  rapidly 
f o r  greater flange lengths. Stubby flanges a re  more s tab le  than wide, 
t h in  flanges, and, except i n  the case of the two narrowest flanges, 
flanges reinforced by rectangular bulbs a re  more s tab le  than those 
reinforced by round bulbs. 

Flanges as long as those commonly used i n  a i r c r a f t  s t ructures  w i l l  
buckle longitudinally in to  a number of half s ine  waves. In  the case of 
flanges w i t h  simply supported loaded ends the  number of half waves in to  
which the flange buckles and the buckling s t r e s s  fo r  any length may be 
obtained by plot t ing a family of curves, using the ordinates of the 
or ig ina l  stress-ratio, length-ratio curve, and multiples 1, 2, 3, and 
s o  fo r th  of the corresponding abscissas, successively, as in f igure 3. 
The t ransi t ion from a buckle pat tern of one half wave t o  that of two 
half  waves occurs at the intersect ion of the  f irst  and second curves so 
drawn, fromtwo t o  three half waves a t  the intersect ion of the second 
and th i rd  curves, and so  for th .  The c r i t i c a l  s t r e s s  r a t i o  f o r  any 
length r a t i o  may be obtained from the curve having the lowest ordinate 
a t  tha t  length r a t io .  With increasing length r a t i o  the buckling s t r e s s  

J 

I 
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r a t i o  approaches a constant minimum value ucrmiJE. 

t h i s  minimum value a re  generally small i n  the range of flange 
lengths L > 2 0 6  

Deviations from 

Transverse Deflectians of Web Center Line 

An expression f o r  the re la t ive  transverse deflection of the web 

Two of equations (8) were m b i t r a r i l y  selected 
center l i n e  of each of s ix  flanges subjected t o  buckling s t r e s s  w a s  
obtained as follows: 
and the  buckling s t r e s s  r a t i o  w a s  substi tuted fo r  The coeffi- 
c ien t  a3 
solved simultaneously fo r  al/a3 and a2/&3. Using equation ( 9 ) ,  the 
r e l a t i v e  values of the deflections were computed. 

ucr/E. 
w a s  then factored out and the resu l t ing  equations were 

These deflections a re  plot ted i n  figure 4, f o r  three flanges with 
rectangular bulbs, and i n  figure 5 ,  f o r  three flanges with c i rcu lar  
bulbs. In figures 4 and 5 ,  the ordinate i s  the r a t i o  of the  deflection 
a t  any point on the  web center l i n e  t o  the maximum deflection, and the 
abscissa i s  the r a t i o  of the distance of the point from the flange base 
t o  the t o t a l  flange width a t  the web center l ine .  
drawn t o  scales of equal area on the figure.  The flange-deflection 
curve starts a t  zero slope f romthe  built-in edge, curves sharply, and 
straightens a t  the bulb. 
have s-shaped deflection curves of the web center l i ne .  

The flanges are  

Flanges having r e l a t ive ly  large bulbs tend t o  

The ef fec t  of flange length on the shape of the  transverse deflec- 
A range 

was considered, since it 
t ion  curve i s  shown i n  f igure 6, using flahge 4 as an example. 
of flange lengths from L/@ = 9.45 t o  27.01 
covers the range of lengths near the minimum buckling stress value as 
shown by f igure 3. 
values of L / G ,  indicating that the effect ive s t i f fnes s  of the bulb 
increases rapidly with decreasing flange length. 

The web center l ine  tends t o  be s-shaped f o r  l o w  

?3uLEZ INSTlBILITY 03' SHFXT-STRINGER STRUCTURES 

A msthod fo r  determining the effectiveness of the flanges i n  
preventing i n s t a b i l i t y  by Euler column buckling pa ra l l e l  t o  the plane 
of the flange w a s  outlined i n  reference 1. It w a s  concluded tha t ,  i f  
the  s t ructure  w a s  not t o  have Euler column i n s t a b i l i t y  before a 
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s t r e s s  uCrS, the la rges t  area of sheet A, which a flange of moment 
of i n e r t i a  IF about i t s  base would s t a b i l i z e  w a s  given by 

The most e f f i c i en t  flange f o r  a given s t r e s s  r a t i o  acrs/E and 
length r a t io  L / f i  w i l l  be that having the highest value of As/$. 
Equation 10) shows that this corresponds t o  having the la rges t  value 
of 
flange f o r  a given cross-6ectional area. 
no other i n s t ab i l i t y  occurs before column fa i lure .  
with large values of IF/AF* 
re la t ive ly  low s t ress .  Inspection of column (14) of tab le  1 shows that 
flange 4 has the highest value of 
flanges 9, 6, 5 ,  and 10. Inspection of f igure 3 shows that, of t h i s  
group of five flanges, flange 4 a lso  has the highest loca l  buckling 
s t rength ucr/E f o r  a l l  values of L/& and t h a t  t h i s  strength i s  
well  i n to  the p l a s t i c  range since it i s  never l e s s  than 0.0147. 
Flange 4, therefore, i s  the best  of the 10 flanges considered i n  t h i s  
report .  

IF/+ , t ha t  is ,  radius of gyration r e l a t ive  t o  the base of the 
I 

This conclusion assumes tha t  
It rules out flanges 

which f a i l  by any other i n s t ab i l i t y  a t  
I 

and i s  closely followed by 

The area of sheet &, which flanges having the shape of flange 4 
can support, i s  shown i n  f igure 7 f o r  a range of values of ( the 
Euler column i n s t a b i l i t y  s t r e s s  of the s t ruc ture)  from Ucrs/E = 0.004 
t o  0.015. The ordinate i n  this figure i s  &/AF while the abscissa 
i s  L/&. The area of sheet A, which can be s tab i l ized  decreases 
sharply as e i ther  ucrs/E o r  L / E  increases. A t  high s t ress ,  
acr/E = 0.012, and reasonable length, 
l e s s  than twice 4. 

ucrs 

L/@ = 40, is  s l igh t ly  

COMPARISON OF PRESENT FLANGES WITH SIMPLY SUPPORTED FLANGES 

It i s  of i n t e re s t  t o  compare the performance of the present flanges 
clamped a t  the root with the performance given i n  reference 1 fo r  
similar flanges simply supported a t  the root.  

1 
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I n  reference 1 it w a s  found tha t  the  most effect ive flanges had 
r e l a t ive ly  compact cross sections. The best  over-all flange width 
ranged from 1.9 6 t o  2.6 6 and bulb width from 0.7 PF 
I n  the present report  the bes t  flange has a somewhat slimmer appearance, 
with a flange width of 3.4 fi and a bulb width of 1 .2  6. 

t o  1.2 E. 

National Bureau of Standards 
Washington, D. C., October 17, 1947 

Y 



APPENT)IX 

SOLUTION BY INTEGRATION METHOD 

A solution f o r  the  buckling strength of a p l a t e  b u i l t  i n  a t  one 
edge and restrained by an e l a s t i c  beam a t  the opposite edge may be 
obtained as follows : 

The equation of the p la te  surface i s  (reference 5 ,  p. 324) 

A t  t h e  edge y = b (reference 5 ,  p.  343) 

for  torsional edge condition, and a t  the  edge y = b (reference 5 ,  
P *  346) 

E 1 . S  D[$ + (2  - V )  ( A 3  1 

for lateral-force edge condition. A t  t he  edge y = 0 (reference 5 ,  
P- 344) 

(A41 
- 0  

aw - -  

Following pages 341 and 337 of reference 5 and taking m = 1, 

U 
w = s i n  -[A(cos KX Py - cosh UY) + B By - sinh w)] ( A 5 )  L 



c 

NACA TN 1985 

where 

and A and B must sa t i s fy  the conditions of equations (A2) and ( A 3 ) .  
These give two simultaneous equations fo r  A m d  B which w i l l  only 
have nonzero values for  a particular value of ax. 

The two conditional equations, with expressions for the p a r t i a l  
derivatives obtained from equation ( A 5 )  substi tuted,  
factored out, and y s e t  equal t o  b, are:  

(-sin y) 

2 
cos Bb + a2 cosh ab + - COS pb - - V R  2 VII 

L2 L2 

2 
s i n  pb + aB sinh ab + E s i n  pb - 'li2' - sinh ab)] = 

L2 aL2 

2 
GJT I(-$ s i n  pb - - 2-a sinh ab) + B ( -  cos pb - - ' cosh ul)] 

L2 L2 

(-XI$ + %ax $)E.(cos pb - cosh ab) + B sinh ab)] = 
L4 

D A(-p3 s i n  pb + a3 sinh ab) + B(p3 cos Bb + a2p cosh ab) + [ 
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c.\ 
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For a given flange geometry the quantit ies 4, b, L, JT, Ib, 
D/E,  and t are known. The value of V is taken as 0.3. 

For a given value of u,/E there can be computed 

ab = 5 + /a P( l0 .92)  - b4 = r 
E t2L2 

c 

L e t  

js(cos s-cosh r ) - h i s 2  s i n  s + r s  sinh r+ 2.961c(sin s - p  sinh r)] 

j (s  sin s + r  sinh r ) +  h [s2 cos s + $  cosh r+2.961c(cos s-cosh r)] 
U =  

hs[s2 cos s + r 2  cosh r+16.78c(cos s-cosh r)]-.(sin s - 5  sinh r )  

h[s3 s i n  s--r3 sinh r+16.78c(s s i n  s + r  sinh r)]+p(cos s-cosh r )  
v= 

The intersection of U and V plot ted as functians of u x p  
defines ucr.. 
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TABLE 2.- BUCKLING STRESS-BATIO VALUES OBTAINED BY 

BOTH STRAIN-ENERGY METHOD AND INTEGRATION METHOD 

Flange 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

IJ/& 

12.47 
19 96 

5.23 
17-43 

11.62 

18.91 

29 98 

7.18 
8.98 

5.88 
7.35 

4.91 
9.83 

12.92 

5.76 

5.40 

14.41 

-~ 

Obtained by 
strain--energy method 

0.0244 
-0185 

0570 
.2207 

.0236 

.0147 

-0233 
.E45 

.00648 

.00614 

.0666 

.0642 

0333 
.0187 

.00880 

.0270 

. o i l3  

Obtained by 
integrat ion method 

0.0244 
,0184 

- 0570 
.2207 

.0236 

.0147 

.00648 

.00614 

.0666 

.0642 

- 0333 
,0187 

.00880 

.0270 

.0n3 
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(a) Rectangular-type bulb. 

I 

(b) Circular -type bulb. 

Figure 1.- Shapes of reinforced flanges. 
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Figure 2. - Elastic buckling strength of flanges. 
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Figure 7.- Area of sheet capable of stabilization by flange 4. 
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